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Stratified flow over a bounded 
obstacle in a channel of finite height 
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The steady-state solution for the stratified flow over a bounded obstacle in a channel 
of finite height is obtained through the use of the inviscid unsteady Oseen equations; 
the body streamline encloses and is produced by a planar momentum sink. The 
calculations are compared with the experimental observations of Wei, Kao & PaL 
(1975) and Baines (1977). In a case where theoretical and experimental values match, 
good agreement was found. This suggests that the Oseen model with its columnar, 
wavelike and decaying solutions may provide a reasonable alternative to Long’s 
model for subcritical flows. 

1. Introduction 
The study of stably stratified flows over obstacles has engaged the attention 

of fluid mechanicians over the past several decades, because of the geophysical 
importance of such flows as well as the challenges they pose to theoreticians and 
experimentalists alike. Many theoretical studies have been based on the use of Long’s 
(1955) model for the steady two-dimensional inviscid stratified flow over obstacles. 
This model requires that in the steady state the density far upstream decreases 
linearly with height, dpldz = - p o N 2 / g ,  and that the kinetic energy per unit volume 
far upstream is independent of height. Under these conditions a linear Helmholtz 
equation for displacement function may be obtained without requiring that the 
obstacle be small. When an obstacle is towed with speed U through a linearly stratified 
fluid in a channel of height D and r U / N D  > 1, these conditions are approximately 
satisfied and calculations based on Long’s model are in good agreement with obser- 
vations. For these supercritical flows, internal gravity waves cannot propagate up- 
stream during the transient period prior to the establishment of a steady-state flow 
and the upstream requirements imposed by Long’s model are not invalidated. How- 
ever, for subcriticaI flows, rrU/ND < l ,  the upstream conditions may be changed 
due to  the possibility of upstream propagation of internal waves during the transient 
period and the upstream conditions required by Long’s model may not hold. Indeed, 
recent observations by Wei et al. (1975) and Baines (1977) have indicated that columnar 
disturbances, i.e. those independent of the distance upstream, do exist and because 
of their presence Long’s model results yield poor quantitative agreement with his 
experimental evidence. 

The analytical alternative to Long’s model is the use of an Oseen model. Janowitz 
(1968) used this model to determine the disturbance due to a line momentum sink 
in an unbounded viscous flow. Trustrum (1971) used the unsteady inviscid Oseen 
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FIGURE 1 .  Geometry of the flow. 

equations to  compute the flow due to  a vertical flat plate in a channel of finite height 
and ?Vong & Kao (1970) utifized the unsteady inviscid Oseen equations t o  study the 
disturbance caused by a line source of volume flux; this calculation led to a body 
shape unbounded in the downstream direction. 

Our objective here is to use the inviscid unsteady Oseen equations to generate a 
steady-state solution for the flow past a smooth bounded obstacle in a channel of 
finite height and to compare these results with available observations. The utility 
of the Oseen approach will be demonstrated. 

2. Specification and solution of the model 
We consider an initially uniform flow of speed U with density p = po(l - N2z /g )  in 

a channel of height H ,  see figure 1 .  A planar sink of x-momentum located in the y, z 
plane and independent of y is slowly turned on and we shall calculate the ensuing 
inviscid motion subject to Boussinesq and Oseen approximations. The governing 
equations are as follows: 

where 

and 

au aw 
.LZp = poN2w/g, -+- = 0, ax az 

G(x, z ,  t )  = F ( z )  6(x) e", ( 5 )  

a a 
at ax 

9 E E - i - U - .  

Here u, to, p ,  andp are disturbances to the initial state and G is the force/(unit volume) 
in the x direction imposed upon the flow; i t  vanishes as t -+ - 00 and is gradually 
turned on thereafter. This technique was utilized by Lighthill (1965) to satisfy the 
radiation condition without employing a Laplace-transform technique. When the 
formal solution is determined we will let e = 0 to obtain the steady-state disturbance. 
The function F ( z )  is the force per unit width per unit height and 6(x) indicates that 
the force is localized in the y, z plane. 

We introduce a stream function as follows: 
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A vorticity equation involving p and y9 is now obtained by cross-differentiating 
equations ( 1 )  and (2)  to eliminate p .  When the 9 operator is applied to the vorticity 
equation and equation (3)  is utilized we obtain the following equation governing $: 

where 

We now expand d F / d z  in a Fourier sine series and seek solutions for $ as follows: 

where 

d F  
- = C Fn sin ( n n z / H ) ,  
dz n = l  

m 

n= 1 
1// = ect C $ n ( ~ )  sin ( n m / H ) ,  

When equations ( 9 )  are substituted into equations ( 8 ) )  we obtain the following expres- 
sion for $ n ( ~ )  : 

- (il + E )  eaxdZ 
(UZ - i ~ ) ~  ( Z 2  + (nn /H)2)  - N212' 

The integral can be evaluated by the method of residues. This integral is virtually 
identical to that evaluated by Lighthill (1 967) in his discussion of an obstacle moving 
along the axis of a rotating fluid and we shall not repeat his discussion here. We let 

X = NH/nU 
and il!! be the integral part of K ,  
i.e. 

M <  x < M + 1 ;  

with these definitions, the steady-state solution for $, with B now taken to be 0,  is 
as follows. For x: < 0, 

U X'Fn sin ( n n z / H )  Fn sin ( n n z / H )  exp ( 0 2 , ~ )  
+ C  ( n / X ) 2  - 1 

For x > 0, 

Intheabove 

(2-exp( - 2 , ~ ) )  
+ 5 F, sin ( n n z / H )  

n=M+1 ( n / X ) ' -  1 

Z, = ( I ( n / Z ) 2 -  lI)&X'n/H. ( 1 l c )  

We note that both $ and $x are continuous across x = 0, but kXz and hence u, are not. 
In  previous work by the author (Janowitz 1974), the disturbances due to line 

singularities in unbounded stratified flow were investigated. The existence of upstream 
columnar disturbances was found to depend on the nature of the singularity; if either 
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u or u,, were discontinuous across the singularity, then upstream columnar distur- 
bances existed. This occurs here for the momentum sink singularity (u,, is discon- 
tinuous). However, if only u, is discontinuous, which was found to be the case for 
dipole and vortex singularities, no upstream columnar disturbances was found. We 
shall see that body shapes produced by the momentum sink singularity tend to be 
streamlined while those produced by a dipole (Janowitz 1974) tend to be more blunt. 
Thus body shape may have an influence on upstream influence. 

We now limit ourselves to obstacles which are symmetric top to bottom and whose 
axis is located at = &H. This is equivalent to an obstacle located at the bottom of 
a channel of height &H. We therefore let F(z)  be an even function of ( z  - QH) and 
d F / d z  will be an odd function of ( z - ~ H ) .  With these limitations all the terms in 
(1 1 a, b )  with n an odd integer will vanish. For this case of an obstacle on the bottom 
of a channel of height + H ,  we make the following definitions : 

D 5 $H,  K = 43'- = N D / n U ,  7 = x/D, 

y =  (z-D)/D (0 < < <  I ) ,  

a, = (~(wz/K)~-  1l)*Kn 

and R < K < if+ I, with E an integer or zero. For the symmetric or bottom towed 
obstacle, when 7 < 0, 

I n  the following section we consider the disturbance due to a specific vertical force 
distribution. 

3. A specific force distribution and its constraints 

comparisons with experimental results we must specify F(5) .  We now take 
The results embodied in equations (13) are still quite general and to proceed to 

= o ,  p < 5 < 1 .  I 
Here .B is the total drag force per unit width of a symmetric obstacle. We can readily 
show that 
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We now let 

The final form for $ is as follows. For 7 6 0 

yn, sin mng 

m = K + l  

In  order to determine the values of C and p which yield body ( - 6 + $ = 0 )  stream- 
lines which enclose the force distribution and are closed in both upstream and down- 
stream directions we proceed as follows. We first fix K and consider values of p = 0.1, 
0.2, 0.3, 0.4, 0.5. We fix p and let C = 1 and compute $l = $(y, 6, K ,  C,p)l,=,. The 
body streamline will enclose the force distribution if, for 7 = 0,  0 6 6 6 p, 

-6+C$,(O, !3 2 0. 

The minimum value for C is given by the maximum value of lJ$.l(O,LJ a t  q = 0, 
0 6 5 6 p. The upstream horizontal velocity disturbance is negative for 5 < p. For 
the body to be closed in the upstream direction, one maximum value for C is set by 
the requirement that, as 7 -+-m, 1 - Ca$l(7, O ) / a c  > 0. If the body streamline is 
closed on the dn--Instream side it must be closed at ak7 = r as $ is most negative 
there. Therefore a second condition on the maximum value of C is set by the require- 
ment that - 6+ C, $,(n/ag, 6) < 0 as 6 -+ 0. The maximum value for C with K and 
p fixed is the smaller of the two values required to close the streamline in upstream 
and downstream directions. With the procedure for determining the range of para- 
meters now set we proceed to a discussion of our results and data comparisons in the 
next section. 

4. Discussion of the results 
Using the procedure outlined in the previous section, we considered values of 

K = 1 . 1 1 ,  1.25, 1.43, 1.60, 1.67, 1.80, 1.90, 2-22 and 2-50 withprangingfrom 0.1 to 0.5. 
For K = 1.6, 1.67, 1.80 and 1-90 no values of C which produced closed streamlines 
could be found. For the other values of K ,  only certain values of ,8 had acceptable 
ranges for C. With the acceptable combinations determined, the total dimensionless 
stream function ( - <+ J(7 ,  6)) was computed on a rectangular grid. The dimensionless 
height (h)  and length (L )  of the obstacle as well as its shape was then determined as 
was the streamline pattern. Two typical body shapes are shown in figure 2. The strength 
of the columnar disturbance is characterized by the far upstream dimensionless hori- 
zontal velocity disturbance. For cases when = 1,  only one mode exists upstream 
and we let U, z - a$( - co, l)/ac. For cases when = 2, we define 

u2 = - a$( -a, &)/a6 and U, = - a$( -03, l) /ag+ U,. 
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K 

1.11 
1.11 
I - t  1 
1.1 1 
1.11 
1.11 
1.1 1 
1.1 1 
1.25 
1.25 
1.25 
1.43 
1.43 
2.22 
2.50 

B 
0.1 
0.1 
0- 1 
0.1 
0.2 
0.2 
0.1 
0.2 
0.2 
0.2 
0.2 
0.3 
0.3 
0.1 
0.2 

C 

2.40 
2.65 
2.90 
3.15 
0.407 
0.4 19 
3.40 
0.443 
0.740 
0.760 
0.990 
0.450 
0.470 
2.50 
0.90 

TABLE 1 .  

h L h l L  UI u2 U,lh 
4-98 0.140 1.10 0.130 0.694 - 
4.59 0.167 1.23 0.136 0.767 - 
4-30 0.195 1.37 0-142 0.839 - 

0.223 1.46 0.153 0.912 - 4.09 
4.03 0.227 0.91 0.249 0.915 - 

0.238 0.96 0.247 0.941 - 3.91 
3.89 0.253 1.72 0.147 0.984 - 

0.260 1.30 0.200 0.995 - 3.83 
3.21 0.230 0.958 0.240 0.739 - 

0.236 0.984 0.240 0.759 - 3.22 
3.25 0.304 1.18 0.258 0.989 - 
2.67 0.315 1.21 0.260 0.841 - 

0.323 1.34 0.241 0.879 - 2.72 
0.122 0.655 0.186 0.066 0.702 0.539 
0.207 0,978 0.211 0.150 0.796 0.725 

Summary of input parameters ( K ,  B, C)  and results. 
See text for definitions of h, L,  U,, U,, CD. 

C D  

1.13 
1.03 
0.97 
0.92 
0.93 
0.91 
0.87 
0.88 
1.67 
1.67 
1.69 
2.50 
2.56 
1.33 
2.26 

0.4 

t 

0.2 

0 

I I' \ 

0.5 1 .o 
-r+ 
1.5 

1) 

FIGURE 2. The body streamline for (a) K = 2.22, ,8 = 0.1, C = 2.5 (- - -) 
and for (b) K = 1.43, ,8 = 0.3, C = 0.47 (-). 

The drag coeEcient for one half of a symmetric body is taken as 

and is equal to (2+P3/3h) C. The results of our calculations are summarized in table I 
which gives the input parameters K ,  C, and the computed height, length, aspect 
ratio (h/L) ,  upstream velocities U,, U2, ratios of upstream velocities to obstacle heights 
U,/h, UJh as well as the drag coefficient. We note that in table 1 the results for a given 
K were arranged in the order of increasing obstacle height. We further note that the 
lengths of our obstacles were always less than one half of the wavelength of the shortest 
lee wave present. This follows from the nature of our force distribution. If the obstacle 
were not closed a t  7 = n-/aE, then it could not be closed in the downstream direction. 
Presumably a superposition of several planar force distributions located a t  different 
values of 7 could generate longer obstacles. 
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K = N D / r U  

FIGURE 3. A diagram of UJh  versus K ,  where the x ’s are the present calculations, the 0 ’ s  are 
Baines’ (1!)77) experimental values, and the 0 ’ s  are.the observations of Wei et al. (1975). See 
text for explanation of numbers corresponding to ( 0 ) ’ s .  
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-0.2 = - 

I /- I 
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FIGURE 4. The streamline pattern for K = 2.22 and h = 0.12. 

When K = 1-11, we had the largest number of calculations. We can see that U, 
increases with h, although the rate of increase is somewhat less than linear (UJh 
decreases with increasing h). However, if we take UJh = 4-4 for K = 1.11, which is 
midway between the extremal values, less than 13 per cent variation of UJh with h 
is present. In  figure 3, we plot UJh versus K (the x ’s) using the mid-extremal values 
for each K ,  Baines’ experimental results (the dots) and results taken from figures 4, 
5, 6 and 8 of Wei et al. (the numbered circles). The values of h were not specified by 
Baines. Circles 4 and 8 are the results for a circular cylinder with h, the ratio of radius 
to channel depth, equal to 0.1 11 and aspect ratio, h/L ,  of 0.5. Circle 5 is for a circular 
cylinder with h = 0.056, and circle 6 is for a vertical flat plate with h = 0.056. For all 
these numbered cases the flow was separated in the lee of the obstacle. Since we would 
expect U,/h to be a function of K ,  h, and h / L  as well as the Reynolds number for blunt 
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FIGURE 5 .  The horizontal velocity over the crest of an obstacle, experimental observations 
( 0 )  and Long’s model results (- - ) for K = 2.23, H = 0.12 from Baines (1977), whtre these 
values are referred to the lower scale. The solid line is our present results and should be referred 
to the upper scale. 

obstacles, and there is variation in h and h /L  between observed and calculated results, 
we can only say that UJh falls with K for both observed and calculated results. 

Baines presents several streamline patterns. I n  figure 4, we present the calculated 
streamline pattern for K = 2.22 with h = 0-122. This is quite similar to Baines’ figure 
2(a) with h = 0.12, K = 2.39. However, the qualitative comparison of calculated and 
observed streamline patterns means little as there may be reasonable qualitative 
agreement but poor quantitative agreement. 

The last point of comparison we can make is between the horizontal velocity 
measured by Baines over the crest of the obstacle, his calculation of that predicted 
by Long’s model, and our calculation based on the Oseen model. I n  figure 5 we present 
Baines’ results, which should be referred to the lower (absolute) horizontal scale, and 
our results, which should be referred to the upper (dimensionless) scale. The experi- 
mental and Long’s model values have K = 2.23, h = 0.12 and our calculations have 
K = 2.22, h = 0.122. As we can see the agreement is quite good. We note that h = 0.122 
is the smallest barrier we generated and only this case could be compared with the 
measured profiles. 

5. Limitations of the theory 
It is clear from the preceding discussion that because of the differences in h and 

h /L  between existing experimental and calculated results, as well as viscous effects 
which cause separation in the lee of blunt bodies, additional data will be necessary to  
confirm or refute the present theory. We now discuss some of the limitations of the 
theory and how they may be overcome. 

First, the theory is inviscid. The body streamlines calculated from the theory are 
fairly streamlined so that boundary-layer separation should not occur. As long as 
boundary layers are thin compared with the obstacle height, an inviscid theory 
should apply. In practice this means that (vT):/h‘ < 1, where T is the towing time 
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1 .o 2 .o 3 .O 
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FIGURE 6. Values of K and in cross-hatched areas have finite ranges for G 
leading to closed body streamlines for a parabolic force distribution. 

h 

1 I , I 

1 .o 2.0 3.0 
K 

FIGIJRE 7 .  The cross-hatched areas indicate obstacle heights for bodv streamlines 
which may be computed for the parabolic force distribution. 

necessary to establish a steady state with respect to a towed obstacle. The data of 
Wei et al. indicate that T - 100/N so that h' 9 1O(v/h')*. 

A second limitation lies in the inverse nature of the solution and the result that 
every choice of p ,  C and K will not lead to a finite closed body streamline. In  figure 6, 
any pair of values for /3 and K lying in the cross-hatched region will yield a range of 
C values for which closed body streamlines exist. This range of C values can be com- 
puted, with ,8 and K chosen in the cross-hatched area, as indicated earlier, and with 
p, K and C specified, a body streamline can be computed. This body shape can then 
be tested experimentally to determine whether the theory is valid. From our calcu- 
lations, table 1, we note that the aspect ratio h / L  = 0.25 exists for a range of K when 
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= 1.  In  figure 7, the range of computed dimensionless obstacle heights (the cross- 
hatched areas) is given versus K for the range of /3 values given in figure 6. For example, 
an obstacle with h = 0.25 couId be tested against the present theory for 1.1 < K < 1.4. 

It is hoped that the above discussion will enhance the utility of the theory. 

6. Conclusions 
We have determined the steady-state solution for the stratified flow over a bounded 

obstacle in a channel of finite height from the unsteady Oseen model by an inverse 
method. The limited comparisons made with the existing data suggest that this 
approach may be a viable alternative to Long’s model for subcritical flows but addi- 
tional experimental verification is necessary. 

The author acknowledges the support of the National Science Foundation under 
Grant ATM78-16408 during the period in which this work was carried out. 
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